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Absrruct- In this paper we present neuro-electric interfaces for 
virtual device control. The examples presented rely upon sampling 
Electromyogram data from a participants forearm. This data is then 
fed into pattern recognition software that has been trained to dis- 
tinguish gestures from a given gesture set. The pattern recognition 
software consists of hidden Markov models which are used to rec- 
ognize the gestures as they are being performed in real-time. Two 
experiments were conducted to examine the feasibility of this inter- 
face technology. The first replicated a virtual joystick interface, and 
the second replicated a keyboard. 

I. INTRODUCTION 

We introduce an approach of designing and using neuro- 
electric interfaces for controlling virtual devices. Hand 
gestures are used to interface with a computer instead of 
manipulating mechanical devices such as joysticks and 
keyboards. Electromyographic signals (EMG) are non- 
invasively sensed from the muscles used to perform these 
gestures. These signals are then interpreted and trans- 
lated into useful computer commands. We have chosen to 
demonstrate replacing joysticks and keyboards in order to 
present a platform with which the average computer user 
has had some experience. Ultimately, more evolved com- 
puter interfaces will not involve the movements associated 
with joysticks and keyboards but will use more inherently 
natural movements for expression. We envision that multi- 
ple modalities will be involved such as combining speech 
with gestures, and that these gestures will evolve to fit the 
most natural application. 

There are a multitude of applications for bio-electric in- 
terfaces. Some of the applications that we are consider- 
ing include the use of EMG to control a robotic arm or a 
robotic exoskeleton. In these cases the mechanical device 
could be made to be controlled as a natural extension of a 
person’s body rather than requiring special training to work 
multi-degree of freedom joysticks. A space-based applica- 
tion could include the capability of typing into a computer 
while being restricted by a space suit. In the event that 
there is a depressurization accident on a long term space 
mission, and the astronauts need to access on-board com- 
puters, EMG electrodes within the space suit could be used 

to replicate a computer interface. Another application in- 
cludes the control of remote vehicles. Examples could in- 
clude mobile search and rescue robots and unmanned air- 
craft (UAVs). In the case of UAVs we envision a “wearable 
cockpit”. This concept involves a pilot wearing computer 
display goggles which would display the cockpit instru- 
mentation. The pilot could then interact with the virtual 
switches, dials, and control sticks by performing the re- 
quired gestures. This would allow for easier reconfigu- 
ration of mission instrumentation providing the ability to 
have the instrumentation change during the mission and 
also allowing each pilot to have his own preferences re- 
flected in the instrumentation. 

Currently most gesture recognition systems come in one 
of two forms: 

Gestures are recognized via an external camera which 
requires sophisticated image processing and controlled 
lighting. 

Gestures are recognized by placing a sensing glove on 
the hand(s) of the participant. 

We desire to do recognition in poor lighting conditions 
in extreme environments (outside of the lab) without en- 
cumbering our hands and without invasive procedures. To 
date, we have accomplished this by directly connecting a 
person to the computer via EMG surface electrodes on the 
forearm. The EMG signais are sampled, digitized, and the 
resulting time-series are passed through a pattern recogni- 
tion system based upon hidden Markov models (HMMs). 
The recognized patterns are transmitted as computer com- 
mands. Our first example of this ([l]) was to attach four 
pairs of electrodes to one forearm, and then interpret the 
resulting EMG signals as joystick commands. These com- 
mands were then used to fly a realistic flight simulator for 
a 757 transport aircraft. The acting pilot would reach out 
into the air, grab an imaginary joystick, and then pretend 
to manipulate this stick to achieve left and right banks and 
up and down pitches of the aircraft simulation. 

Our latest results are in pretending to type on a table (or 
lap) and translating the resulting sensed EMG signals into 



keystrokes. In the following sections we will describe the 
methods we used to acquire the EMG data, to recognize 
the patterns and the experimental tasks that we controlled 
with these signals. Lastly, the results and a conclusion will 
follow. 

used and then an automated sub-sampling procedure ini- 
tiated. A practical drawback to this technique is that over 
50 channels are required to be simultaneously sampled to 
fully cover the forearm. Another problem with gesture in- 
dependent placement is that the active channels will not 
in general be applicable to new gestures not yet added to 
the activation set. In the future, this problem will be ob- 
viated with smaller sensors which can be spread onto the 
Skin by the hundreds With Co~esPonding shrinkage in the 
Pre-amPlifierS. 

"JJIe Joystick task required 4 electrode Pairs. Dry eke- 
trodes sewn into a sleeve were used as shown in Figure 1. 
This sleeve helped to reduce variation in the placement of 
the electrodes. The typing task required 8 electrode pairs. 
We chose to use wet electrodes for this work due to the 
improved signal to noise characteristics of wet electrodes 
over that of dry electrodes. This was in part due to the sig- 
nal amplitudes for the typing task being much smaller than 
that of the joystick task. The drawback to using wet elec- 
trodes is that the position of the electrodes unintentionally 
varied from one day to the next. The locations of these 
Pairs were obtained by establishing a grid of &CtrodeS on 
the forearm, and then performing the desired task; and only 
those electrodes which produced distinct signals for a ges- 
tures were used. The positions of the electrodes for the 
typing task were in two rings arOund the forearm: one near 
the wrist, and one near the elbow also Shown in Figure 1. 

Several tests Were conducted to measure the effects of 
minor variations in Placement (1-3 mm) and major dis- 
placements (1-2 cm). The minor variations had no im- 
pact but the major displacements require that the recog- 
nition models be re-trained or adapted for the individual 
user. Individual differences in personal physiology proved 
to be challenging. Differences in arm lengths and widths 
made it difficult to place the electrodes at the proper po- 
sitions across people without considerable effort. In ad- 

and varied with the amount of training that individuals re- 
ceived. 

11. METHODOLOGY 

Each gesture set type necessitated a different method- 
ology be used. The virtual joystick gesture set used four 
pairs of dry electrodes and four coarse grained movements. 
The virtual keyboard gesture set consisted of 8 pairs of wet 
electrodes and 11 fine grained movements. The methodol- 
ogy that we followed consisted of the following steps: 

1. Gesture selection 
2. Electrode application (location and number) 
3. Signal acquisition, filtering, and digitization 
4. Feature formation 
5. Pattern recognition model training and testing 
6. Pattern recognition application in interactive simulation 

Each of these steps will now be described in detail. The 
process started by selecting the desired physical motions 
(gestures) to be used to control the virtual device. From 
the set of gestures, the best location for the limited number 
of electrode pairs (a maximum of 8 in our case) was es- 
tablished. Then standard signal processing practices were 
used to filter and digitize the signal. Transforms such as 
moving averages were applied to this raw digital data. The 
transformed data was fed into the pattern recognition soft- 
ware to train the models. Once the pattern recognition 
models were trained, they could be used for the real-time 
recognition task. 

A. Gesture selection 

Our first task used coarse grained gestures to mimic ma- 
nipulating a joystick There were four basic gestures 

The recognition of these gestures was made easier because 
there were only four gestures and there were four pairs 

pretending to move a joystick: up, down, left, and right. dition, strengths of the EMG signals varied across people 

of electrodes which provided for reasonable separation be- 
tween gestures. C. Signal acquisition, filtering, and digitizing - 

Our second task consisted of pretending to type on a 
number pad on the keys 0 - 9 and Enter. These movements 
consisted of much finer grained gestures. The first, second, 
and third fingers were resting over the 4, 5 ,  and 6 keys 
respectively. The first finger was used to press the keys 1, 
4, and 7. The second finger was used to press the keys 2, 
5, and 8. The third finger struck the keys 3,6,  and 9. The 
fourth finger was used for the Enter key. The thumb was 
used to strike the zero key. In this case we used 8 pairs of 
electrodes. 

The EMG data was acquired by placing differential .in- 
strumentation pre-amplifiers near to each electrode pair 
with a Common Mode Rejection Ratio of 110 dB. All eight 
channel pairs were referenced from a common ground 
electrode positioned over bone at the wrist or elbow. The 
signal was digitized using 16 bits at 6000 Hz., and then 
a 32 tap anti-alias bandpass Bessel filter was applied and 
then down sampled to 2000 Hz unless otherwise indicated. 

D. Feature formation 

The goal of the feature formation step is to separate the 
signals enough to allow the pattern recognition module to 
distinguish between gestures. Another result of the trans- 
formation is to create a space smooth enough to be reliably 
modeled. We tried many common methods such as Short 
Time Fourier Transform ( S m ) ,  wavelets, moving aver- 

B. Electrode application 

The location of the electrodes depend upon the gestures 
that we wish to recognize and upon individual physiolog- 
ical differences. We speculate that it is possible to have 
gesture independent placement if enough electrodes are 



ages, and auto-regression coefficients. In the end, the sim- 
plest feature space seemed to be the best: moving averages. 
Since the EMG signals were differentially amplified, the 
average of the signals when presented with enough sam- 
ples was approximately zero. This required that the mov- 
ing average be performed on the absolute value of the sig- 
nals. The windows used to form the moving averages were 
allowed to overlap by 75 percent. Note that this is purely 
an amplitude-based method; the frequency of the electrical 
activity did not seem to vary significantly from one gesture 
to the next. 

E. Pattern recognition 

The pattern recognition method we chose to employ 
was a hidden Markov model (HMM). HMMs have been 
developed by the speech recognition community in re- 
sponse to their pattern recognition time-series problem 
([2]). The history of speech recognition reveals a process 
which first attempted to recognize isolated words from a 
single speaker, then isolated words from multiple speakers, 
followed by continuous words from a single speaker, and 
finally continuous words from multiple speakers. We are 
following a similar approach with our gesture recognition 
work. We have developed isolated gesture recognition for 
both a single participant and for multiple participants. The 
work described in this paper will describe isolated recog- 
nition for a single typist and continuous recognition for the 
joystick study. 

Two issues with training any model to learn from sam- 
pled data are that the dataset is representative and that the 
model has the appropriate number of parameters for accu- 
rate representation. The training dataset can suffer from 
not having enough exemplars or it is inconsistent for the 
sample size. In our case, we can always sample more data 
if we do not have enough. On an empirical basis, we have 
experienced being able to use as few as 20 exemplars from 
each gesture to adequately model the remaining data from 
a single day. However, when we combine data from multi- 
ple days it becomes readily apparent that inconsistency is 
a problem. 

day to the next. In this case we need to have enough data 
to represent the multi-modal statistics and we need a way 
to adapt the system models from day to day. Our current 
methodology does not vary adaptively but it is our plan to 
include this in future work. This means that our best rem- 
edy is to recognize when day to day variation is too great 
for adequate model generalization. We can then use less 
data for training by only using the data similar to our cur- 
rent day's setup (i.e. electrode locations). 

E.l training 

The HMMs we used were continuous, tied mixture ([3], 
left to right models. Standard Baum-Welch training ([2]) 
was used. For those readers not familiar with HMMs, here 
is a brief explanation of each of these terms. The models 
are called continuous if they use inputs which can take on 
a range of floating point values. The alternative to this is 
to allow for only discrete values such as might be found if 
the input were transformed by quantization. Eed mixtures 
means that a fixed number of Gaussian mixtures are used 
through out all of the states. Thus any state may make use 
of any mixture. A left to right model means that the HMM 
may not go back to a previous state but may remain in a 
state or EO onto a new state. " 

The initialization of the models were performed using 
K-means clustering. The states were partitioned to equal- 
ize the amount of variance present within each state. The 
data sets used to train were segmented to insure that the 
peak of the variance was near the middle of each segment. 
This translated to the bulk of the energy being centered. 
Segments were sampled at 2000 Hz and contained 3072 
samples per channel, with eight channels total. The param- 
eters of the HMMs that we typically varied were the num- 
ber of discrete states, the number of Gaussian mixtures, 
the number of maximum number of iterations to train, the 
method used to arrive at the state partitioning (uniform vs. 
variance based), and the method used to initialize the pa- 
rameters of the mixtures (e.g. k-means clustering). 

We define inconsistency as the statistics of the data vary- 
ing from day to day. We could have defined this in terms 
of gesture to gesture variation but have chosen not to be- 
cause this variation is more of a natural variation inherent 
in human behavior whereas the day-to-day inconsistencies 
are more an artifact of the experimental procedures. 

There are many solutions to resolving this inconsistency. 
There are many contributions to the variations which could 
be minimized. One example is electrode placement. If the 
electrode locations are allowed to vary from day to day 
then the signal statistics will also vary. This can be elimi- 
nated through the use of a fixed electrode sleeve. 

Day to day variations related to natural behavior may not 
be possible to remove, and in fact we would benefit from 
modeling them. One example is the way that people ges- 
ture may vary slightly from day to day even though their 
intentions are to perform the gestures identically from one 

E.2 recall 

The real-time recall was performed using the standard 
Viterbi algorithm ([4]). Since the system was processing 
data as the data streamed by, there was no knowledge as to 
where the peak of the variance was occurring. Because of 
this, the HMMs would see the data when the peak was first 
at the left most in the time segment, then the peak would 
move across from left to right, and then the final presen- 
tation was when the peak was at the right most part of the 
segment. Since the HMMs were trained only when the 
peak was centered, due to this shifting, the HMMs were 
required to recognize a gesture several times in a row be- 
fore that gesture was selected as the one that was observed. 
This prevented spurious recognition when the peak was not 
near the center of observation. 

. 



TABLE I E Experiments 

bility of achieving two goals: 

1. Substituting for a joystick with bioelectric signals 
2. Substituting for a keyboard with bioelectric signals 

The first experiment consisted of four pairs of dry elec- 
trodes fitted within a sleeve to the forearm of a participant. 
The participant was then asked to pretend to be moving 
a joystick left, right, up, and down. The participant per- 
formed each of these gestures 50 times. The data was sep- 
arated by gesture, and segmented to have the peaks be in 
the center of 3072 sample segments. Artifacts or incom- 
plete gestures were removed from the data sets via manual 
inspection. These sets were then used to train four HMMs, 
one for each gesture. These trained models were then used 
to recognize gestures made on a day excluded from the 
training set using the same dry electrode sleeve. A con- 
fusion matrix was generated to display errors and to show 
which gestures were confused with one another. The sys- 
tem has also been used for numerous real-time demonstra- 
tions of flying a simulated 757 transport aircraft to landing 
([ 11). A more continuous gesture recognition was imple- 
mented by decreasing the segment size. 

Four methods were used to test the pattern recognition 
system. The first involved training the models on data from 
one day, and then recalling on different data obtained on 
the same day. We will call this method same trial acqui- 
sition and testing. The second involved training on data 
from one day and recalling on data collected on a differ- 
ent day. We will call this method cross-trial acquisition 
and testing. The third method trained on data sub-sampled 
from a large set taken across multiple days, and then recall 
was performed on data different from the training but in the 
same large set. This third method will be called multi-trial 
acquisition and testing. The final method involved train- 

best recognition in our real-time simulation for flying an 
aircraft. We will call this best trial training and real-time 
testing. 

in two rings of four each, one ring near the wrist, and the 
second near the elbow. The participant was asked to touch 
type on a printed picture of a number pad keyboard, strik- 
ing the keys 0, 1,2,3,4,5,6,7,  8,9 and Enter. The partic- 
ipant was asked to type these in order, separated by a one 
second rest interval, for a total of 40 strokes on each key. 
This data was then segmented, and artifacts were manu- 
ally removed. Data was collected on several different days. 
Eleven HMMs were trained, one for each gesture. 

The performance on batch data sets is not equivalent 
to the performance found in live demonstrations. Typ- 
ically batch data sets are collected under static condi- 
tions. The live demonstrations are typically performed un- 
der high stress, with imperfect electrode placement, while 
the participant is bombarded with questions and distrac- 
tions. Thus live performance tends to suffer from more 

CONFUSION MATRIX FOR CROSS-TRIAL JOYSTICK DATA 
The experiments were conducted to determine the feasi- 

[I Gesture 11 Left I Right I Up I Down I Correct [I 

than the batch testing results. 

111. RESULTS 

A. Joystick 

A. Same trial acquisition and testing 

This experiment is by far the easiest to recognize be- 
cause the variability associated with day-to-day differences 
has been eliminated. Such variation includes conductivity 
levels of the skin, positioning of the dry electrode sleeve, 
and changes in the performance of the gestures. We no- 
ticed that we could determine when participants had used 
skin moisturizer before the experiment because the signal 
quality obtained from the dry electrodes improved. Typi- 
cally if the HMMs had an appropriate number of parame- 
ters and enough data was used, then no errors were made 
upon recall of the validation set. 

A.2 Cross-trial acquisition and testing 

This experiment demonstrated which gesture was the 
hardest to separate from the others. In particular, we 
trained on 5o instantiations from one trial date and then 
validated on 50 other instantiations from a different trial 
date. A typical confusion matrix is shown in Table I. 
This indicates that day-to-day were significant 
enough to in separating the gesture Left 

electrode placement, length of the gesture, strength of ges- 
ture formation, and the fom of the gesture (wrist angles). 
This lead to the next experiment to see if the models would 

and then tested on a withheld subset. 

A.3 Multi-trial acquisition and testing 

To determine the generalization capability of the HMMs 
we trained on data from multiple trial dates and then re- 
called on points withheld from the training data for the 
same dates. This resulted in good results indicating that 
the models had sufficient number of parameters to learn 
the data complexities (although arguments for over-fitting 
could be made, the real-time recall results are what is most 
important). A typical confusion matrix is shown in Table 
11. 

Of course this does not mean that when yet another new 
day of data is added that the system will be able to gen- 
eralize on that data. In the next experiment we examine 

ing On a previously acquired sing1e day that provided the from other gestures. The of the variations included 

The second experiment used pairs Of wet generalize if we trained on all of the different days together 



TABLE I1 TABLE IV 
CONFUSION MATRIX FOR MULTI-TRIAL JOYSTICK DATA MULTI-TRIAL CONFUSION MATRIX FOR TYPING DATA 

]Gesture Left Right Up Down Correct 
Left 50 0 0 0 100% 
Right 0 50 0 0 100% :, UPU 0 0 50 0 100% 
Down 0 0 0 50 100% 

TABLE III 
CONFUSION MATRIX FOR CROSS-TRIAL SHORT JOYSTICK DATA 

1 Gesture I] Left 1 Right I Up 1 Down I Correct 

100% 
Down 

training on the single best day and using that for real-time 
testing. The real-time testing acts as new and unseen data. 

A.4 Best-trial training and real-time testing 

The error rates determined from the previous methods 
were not necessarily indicative of real-time performance. 
In particular the error rates would vary across time de- 
pending upon many factors such as sleeve position (rota- 
tion), sweating, skm moisture (dry skin does not conduct 
well), length of time that the electrodes were worn, and fa- 
tigue (resulting in tremors). By training on only a single 
day’s data, we were able to use the dry electrode sleeve for 
demonstrations on many different days. We selected the 
day which gave the best real-time reliability. The demon- 
strations consisted of flying a 757 transport aircraft to land- 
ing at a simulation of San Francisco airport. 

A S  Continuous Recognition 

7 0 0 0 0 0 0 5 1 0 0 1 0 0  
8 0 0 0 0 2  1 3 4 4 1  86 
9 0 0 0 0 0 0 0 0 5 1 1 0 0  

matrix had no errors. In the next set of experiments we 
have switched from using the dry electrode sleeve to wet 
electrodes. This was necessary because the EMG signals 
measured for the typing gestures were much smaller than 
those for the joystick. The wet electrodes tend to have a 
higher signal-to-noise ratio than the dry electrodes. 

B. Keyboard 

In this experiment, the position of the hand above the 
simulated number pad was maintained in a touch-typist 
typing position. If the position of the hand were allowed 
to vary, the tasks of distinguishing between hitting the top 
row of keys from the bottom row of keys would greatly 
increase in difficulty and would require electrodes on the 
upper arm to sense the movement. The angle of the partic- 
ipant’s wrist also had to be carefully maintained to avoid 
radically changing the sampled signals. Even with careful 
attention to position and maintaining electrode placement 
from day to day, the data tended to vary. There are consis- 
tent trends in the data but that the variation between instan- 
tiations of the same gesture is great. The impact of these 
variations will be discussed further in the results section. 

In the previous experiments, a total of 3072 data samples 
were used to form the estimate. This introduced consider- B. 1 Multi-trial acquisition and testing 

able time lag into the system (1.5 seconds). In an attempt 
to become closer to a continuous recognition process, the 
time segments used to train the HMMs were shortened to 
only contain the first part of the rise of the signal using 352 
samples. In this case the Hh4Ms consisted of 3 states with 
9 mixtures total. The resulting cross-trial confusion matrix 
is shown in Table 111. 

This matrix is not significantly different from the pre- 
vious cross-trial longer data. The change in signal length 
allowed for us to remove noticeable delays between the 
gesture action and the movement of the aircraft. We now 
have less noticeable delays (176 ms.) but this in turn has 
caused a slight decrease in the robustness of the gesture 
recognition process. It is possible to halve this response 
time with a small decrease in the recognition rates. Since 
this is intended for real-time systems, such a lag is hard to 
justify but it has not prevented us from successfully flying 
the simulated aircraft. The resulting multi-day confusion 

In the keyboard replication experiments we had much 
greater daily variation in electrode placement than with the 
joystick. We also had difficulty in reliably having the par- 
ticipants maintain a consistent hand position from trial to 
trial. This included making sure that the wrist angle was 
similar and that the hand was consistently either not rest- 
ing on the table during motion or was in part supported by 
the table (i.e. bad form, but consistent bad form). Given all 
of these difficulties, the resulting confusion matrix shown 
in Table IV for multiple trials looks pretty good. The vari- 
ability in the data caused our models to generalize gestures 
such that more confusion occurred. For live demonstra- 
tions, we needed to train on the same day that we were 
giving the demonstration, and thus only used a single day’s 
data. However, the training only took a few seconds. 

The use of wet electrodes has caused unintentional mis- 
placement. We are currently developing new dry electrode 
straps which have a higher density than the sleeve and 
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et of gestures. The person will be able to perform a 
: that seems natural to him or her in order to accom- 
given task, and the computer will simply map those 
; to the correct action. 

IV. CONCLUSION 

have shown that it is feasible to control virtual de- 
ria non-invasive EMG signal monitoring. We have 
strated that it is possible to replicate both joysticks 
yboards. We chose to demonstrate these input de- 
)ecause they are familiar to the general computer 
Jltimately, the most natural interface will consist of 
atural movements than those associated with either 
ks or keyboards. When our on-line adaptation soft- 
1s been completed it will be possible for a person to 
le gesture he feels is natural for a given task (assum- 
: we have enough electrodes to cover the muscles in- 
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: sensor or variations in moisture lev- 
an usually be identified in the signals 

signals for control in long dufation space missions. One 
of the side effects of living in a zero gravity environment 
for extended periods is muscle atrophy. It would be possi- 
ble to have astronauts train during a long flight to a distant 
planet by simulating the motions necessary to accomplish 
a given task. The EMG signals generated from these mo- 
tions could be analyzed. If significant variations were de- 
tected, the astronaut could be given advanced warning to 
change their training routines to ensure mission success. 

Our next generation work is to integrate both EEG sig- 
nals and EMG signals so that we have an augmented brain- 
computer interface. Since EMG signals are much faster 
than EEG signals, this will allow us to have both a fast re- 
sponse EMG interface and a more slower response thought 
based interface. 
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